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previous papers," a theory of nuclear substitution has been de­
veloped with the aim of providing a quantum mechanically sound 
framework for interpreting changes in molecular properties in 
terms of molecular structure. At present, this theory has been 
carried out to first-order wave function corrections (at the Har-
tree-Fock level), and a number of established chemical concepts 
have been shown to follow analytically from the first-order 
treatment. These include Benson's equivalent group schemes,8 

Pauling's covalent radii and electronegativity relationships,48,49 

free energy relations49 such as the Hammett10 and Drago equa­
tions,50 and various rate-equilibrium relationships12 including the 

(48) L. Pauling, "The Nature of the Chemical Bond", 3rd ed., Cornell 
University Press, Ithaca, New York, 1960. 

(49) J. R. Murdoch, unpublished. This result can be derived from equa­
tions published in ref 11a. 

I. Introduction 
Position of Stationary Points on Potential Energy Surfaces. 

Recently, Miller' proposed a simple relationship for predicting 
the barrier position along the reaction coordinate, and his proposal 
was tested against other methods2"5 of computing the barrier 
position. Miller concluded that his equations compare favorably 

(1) A. R. Miller, J. Am. Chem, Soc, 100, 1984 (1978). 
(2) (a) F. London, Z. Elektrochem., 35, 552 (1929); (b) H. Eyring and 

M. Polanyi, Z. Physik. Chem., Abt. B, B12, 279 (1931); (c) S. Sato, J. Chem. 
Phys., 23, 592 (1955). 

(3) H. S. Johnston and C. Parr, J. Am. Chem. Soc, 85, 2544 (1963). 
(4) (a) F. O. Ellison, J. Am. Chem. Soc, 85, 3540 (1963); (b) J. C. Tully, 

J. Chem. Phys., 64, 3182 (1976); (c) J. C. Tully, ibid., 58, 1396 (1973). 
(5) (a) C. F. Bender, S. V. O'Neil, P. K. Pearson, and H. F. Schaefer, III, 

Science Washington, D.C.), 176, 1412 (1972); (b) B. Liu, /. Chem. Phys., 
58, 1925 (1973); (c) C. F. Bender, B. J. Garrison, and H. F. Schaefer, III, 
ibid., 62, 1188 (1975); (d) P. Siegbahn and B. Liu, ibid., 68, 2457 (1978); 
(e) R. E. Howard, A. D. McLean, and W. A. Lester, Jr., ibid., 71, 2412 
(1979). 

Marcus equation.2t4c Preliminary results indicate that behavior 
derivable from parabolic/linear interpolation models is also closely 
associated with first-order perturbations, and consequently, this 
aspect, as well as extension to higher-order perturbations, is un­
dergoing close examination. 
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with "the best of the methods for computing the barrier position", 
and this includes the ab initio approaches. Miller's relationship 
is simple and predicts that the barrier position (X*) depends only 
on the height of the barrier (A£*) and the energy difference 
between products and reactants (AE): 

Miller derived this relationship by representing the reactant and 
product sides of the reaction coordinate by two separate spline 
functions (double-knot spline functions, DKSF) which are joined 
smoothly at the energy maximum. Miller's treatment leaves the 
choice of function for the splines completely open but imposes 
several constraints on the parameters so that the barrier function 
will have derivatives of zero at the initial and final points (X = 
0,X= 1, respectively) and at the transition state (X = X*). The 
values of the barrier function, E(X), are constrained to pass 
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through zero, AE*, and AE at X = 0, X = X*, and X=I, 
respectively. These six constraints will be referred to as the 
barrier-function boundary conditions. The final constraint is that 
the parameters of the two spline functions are chosen to minimize 
the arc length of the barrier function, and Miller argues that the 
position of the barrier maximum (X*) does not depend on the 
functional form of the spline functions (as long as the seven 
constraints are met). The barrier position, X*, is always given 
by eq 1 and is completely independent of the two functions chosen 
to represent the two splines. Consequently, it is not necessary to 
actually fit splines to the reaction coordinate or even to know the 
functional form of the reaction coordinate in order to apply eq 
I. Miller1 has empirically shown that one suitable reaction co­
ordinate variable for eq 1 is bond order (vide infra). 

Miller's result (eq 1) is quite intriguing for several reasons. 
Although the same functional form must be used for each spline, 
Miller's proof places no further restriction on the choice of 
functions which can be used to fit the barrier surface. Since a 
very wide variety of admissable functions is available to fit a 
potential surface and since the path of minimum arc length has 
an obvious, although intuitive, relationship6 to the minimum 
gradient or minimum energy path, eq 1 is a result with extremely 
general and far-ranging implications. These implications are given 
further weight by the impressive empirical correlations cited by 
Miller and the extensive applications7 which have followed since 
Miller's original paper. 

Theoretically, it is quite mysterious why the barrier position 
should be independent of the specific functional form of the re­
action coordinate and should depend only on the barrier height 
and the reaction thermodynamics. After examining Miller's results 
more closely, it became apparent that arc-length minimization 
and the other criteria listed by Miller are not sufficient to give 
eq 1. There is one additional requirement which amounts to a 
modified symmetry relationship between the reactant and product 
halves of the reaction coordinate and is termed a "scaled symmetry 
relationship" (vide infra). Equation 1 is an apparently reasonable 
result on empirical grounds,7 and while the author believes that 
this new finding does not appreciably reduce the significance of 
Miller's earlier results, an important question is raised concerning 
the theoretical significance of the scaled symmetry relationship. 
The purpose of the present paper is (1) to show that the scaled 
symmetry relationship plus Miller's other requirements are suf­
ficient conditions leading to eq 1 and (2) to demonstrate that the 
scaled symmetry relationship provides a simple, but general, 
foundation for extending the application of Marcus-like equations 
to all one-step reactions. 

II. Scaled Symmetry Relationship and the Barrier Position 
Miller's use of double-knot spline functions (DKSF) to represent 

a potential barrier amounts to describing the reactant "half" of 

(6) The path of minimum arc length will not necessarily be the path of 
minimum energy. Arc-length minimization includes the effects of displace­
ments along the energy axis and the coordinate axes, whereas energy mini­
mization includes only the former. For certain simple surfaces (e.g., hyperbolic 
paraboloid) where the shortest path in terms of coordinate length is also the 
minimum energy pathway, the path of minimum arc length and minimum 
energy can coincide. In such cases, the fact that arc length involves mixing 
units of coordinates (Cartesian distance, bond order, etc.) with units of energy 
will not be troublesome. This situation may be reasonably common since many 
PES for proton and atom transfers bear a striking resemblance to hyperbolic 
paraboloids after transformation to bond-order coordinates (ref 22). In any 
event, the reader should be aware of the fact that the path of minimum arc 
length or minimum energy is dependent on the choice of coordinates and may 
have no direct relevance to the dynamic problem of molecules moving over 
a PES. However, such pathways do serve as a means of characterizing a PES. 

(7) (a) B. Schaldach and H. F. Grutzmacher, Int. J. Mass., 31, 271 (1979); 
(b) M. M. L. Chen and H. F. Schaefer, HI, J. Chem. Phys., 72, 4376 (1980); 
(c) R. Shubert and H. F. Grutzmacher, J. Am. Chem. Soc., 102, 5323 (1980); 
(d) R. F. Nalewajski, Chem. Phys. 50, 127 (1980); (e) Y. Kondo, T. Yamada, 
and S. Kusabayashi, J. Chem. Soc, Perkin Trans. 2, 414 (1981); (0 D. 
Cremer, J. Am. Chem. Soc, 103, 3619, 3627 (1981); (g) D. Cremer, Angew. 
Chem., Int. Ed. Engl, 20, 888 (1981); (h) D. V. Ramana and H. F. 
Grutzmacher, Org. Mass. Spectrom., 16, 227 (1981); (i) G. Bouchoux, Y. 
Hoppilliard, M. Golfier, and M. G. Guillerez, ibid., 16, 29 (1981); Q) E. S. 
Lewis, C. C. Chen, and R. A. More O'Ferrall, J. Chem. Soc, Perkin Trans. 
2, 1084 (1981); (k) J. J. Gajewski, / . Am. Chem. Soc, 101, 4393 (1979). 

the barrier with one spline function and the product "hair with 
a second spline function. Thus, a barrier function, E(XJt*) is 
described in terms of gx(XX) from 0 < X < X* and in terms 
of g2(XX) from X* < X < 1 or in Miller's notation as 

E(XX) = gx(XX), 0 < X < X* 
= g2(XX), X* < X < 1 (2) 

The two interpolating functions, gx and g2, are continuous, have 
continuous first derivatives, and belong to the same ^-parameter 
family of equations. Two functions of X belong to the same 
^-parameter family if they each contain k functional parameters 
and if they differ only by the values of the k parameters. For 
example, all second-degree polynomials belong to the same 
three-parameter family. As an example, Miller considers a barrier 
represented by two cubic splines: 

Ex(XX) = AE*(-1X2 + 3X2X^ZX*3, 0 < X < X* 
= (AE* - AE)[-2X* + 3(X* + I)X2 - 3X*(1X-

1) - I]/(X - I)3 + AE, X* < X < 1 
(3) 

The splines meet the constraint that the first derivatives of Ex-
(XX) are zero at X = 0, X = X*, and X = 1, and the splines 
also satisfy the contraints that Ex(QX) = 0, E1(X*X) = AE*, 
and EX(\X) = AE. For cubic splines the only parameter left 
undetermined is X*, and this is chosen by the arc-length mini­
mization criterion. 

The two cubic equations can be rewritten as 

AE [-{§)'+ {§)']-^^xs "^ 
and 

g2(\ - X), X* < X < 1 (5) 

The rearranged form of the cubic splines illustrates the idea of 
the scaled symmetry relationship. Note that when 1 - X' rep­
resents the same fraction of \- X* that X" represents of A7*, and 
then g2 - AE is the same fraction of the reverse barrier (AE* -
AE) that gi is of the forward barrier (AE*). Expressed as 
equations, if 

1 -X' 

\-X* 

X^ 

X* 

then 

ft(l- X^-AE gx(X") 

AE* - AE AE* 

(6) 

(7) 

For the cubic splines, the scaled symmetry relationship arises from 
the boundary conditions imposed at X = 0, X = X*, and A - = I , 
since the four coefficients of each cubic are completely defined 
by the four boundary conditions. It is also easy to verify that when 
X is given by eq 1, then the arc length of Ex(XX) (eq 3) is 
minimized (Table I*). 

Two fourth-order polynomials satisfying the boundary condi­
tions are given by 

g\(xX) = 

(3 + C1 ,( |) !-2 ( 1 + C l ,(f) ' + C,(|)'«8) 

s,(xx) - (3 + « ( 7 ^ ) - 2<> + c>\Tri + 

where C1 and C2 are arbitrary constants. When C1 = C2, gx and 
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gi satisfy the scaled symmetry relationship, and the arc-length 
minimization criterion for Ex[XJC*) leads to a value for X* which 
satisfies eq 1 (i.e., C1 = C2 = -1.412, see Table I*). However, 
if C2 = IOC), then arc-length minimization does not lead to a value 
of X* consistent with eq 1 (Table I*), and consequently arc-length 
minimization and the fact that gx and g2 are members of the same 
k-parameter family of interpolating functions are not sufficient 
conditions for leading to a barrier position predicted by eq 1. 
When C2 = C\ = -14.12, the arc-length minimization criterion 
again leads to X* given by eq 1 (Table I*). These results prove 
that additional criteria are necessary for eq 1 to hold, and in 
Appendix I* it is shown that the scaled symmetry relationship 
plus Miller's two criteria are sufficient. 

III. Simple Functions Leading to the Scaled Symmetry 
Relationship 

For DKS functions, the scaled symmetry relationship is 
equivalent to using the same scaled spline functions for the left 
and right halves of the reaction coordinate and to using eq 6 and 
7 to establish the scaling relationship. One simple spline function9 

leading to the scaled symmetry relationship is the intersecting 
parabola model which has been used as a means of obtaining 
Marcus' equation.8 Another spline function satisfying the scaled 
symmetry relationship is Agmon's suggestion,10 which he obtains 
by combining Snell's law, describing the reflection of a light ray 
from a flat surface, with Pauling's definition of bond order11 and 
Johnston's3 approximation of bond-order conservation. A 
nonspline function12 is the inverted parabola model,13 which has 

(8) Marcus has derived two different equations. The first for weak-overlap 
electron transfer appears in ref 8a and is referred to as the Marcus equation 
in the present paper. The second is for atom transfer reactions and is discussed 
in ref 8b: (a) R. A. Marcus, J. Chem. Phys., 24, 966 (1956); (b) R. A. 
Marcus, J. Phys. Chem., 72, 891 (1968). 

(9) The intersecting parabola model consists of two parabolas, spaced at 
a fixed horizontal distance of 1 unit and separated vertically by AE. The 
quadratic coefficient of each parabola is identical. The parabolas are given 
by >>! = aX2 and y2 = a(l - X)2 + AE and to establish the scaled symmetry 
relationship we need to prove the following: 

af(X)2 af(\ -X*)2 

AE* AE* - A£ 

Eliminating af1 from each side, substituting X1 = '/2 + AE/2a and AE* = 
(1 + 2 AE J a + AE2/a2)a/A, we get 

which establishes the scaled symmetry relationship for the intersecting para­
bola model. 

(10) (a) N. Agmon, J. Chem. Soc, Faraday Trans. 2, 74, 388 (1978); (b) 
for 0 £ X < X*, Agmon's spline function is 

which can be rearranged to give 

{x\'_E(X) 

\X/ = AE' 

by using X = AE*/(2AE* - AE). For X < X < 1, Agmon's spline function 
is 

(2A£* - AE)I 
-(I -X)i + AE = E(X) 

(AE*-AE)"-1 

which is equivalent to 

(1 -X)i E(X)-AE 

(1 -XY ~ AE*- AE 

which establishes the scaled symmetry relationship. Note that Agmon's splines 
have a "cusp" at the transition state rather than a stationary point. Agmon's 
result also satisfies eq 1. 

(11) L. Pauling, / . Am. Chem. Soc, 69, 542 (1947). 

also been used to rationalize the Marcus relationship.14 Since 
Miller found remarkably consistent agreement between the ab 
initio or empirical barrier positions and eq 1, one is obviously led 
to consider the question of whether the scaled symmetry rela­
tionship or arc-length minimization have any fundamental sig­
nificance. Neither the intersecting nor inverted parabola models 
lead to a minimum arc-length path, and consequently, we will first 
examine the general class of functions exhibiting the scaled 
symmetry relationship and then examine the subset of these 
functions satisfying the minimum arc-length criterion. 

IV. General Functions Satisfying the Scaled Symmetry 
Relationship 

Spline functions are a very convenient tool for obtaining ap­
proximations to complicated functions, but the fact that different 
interpolating functions are used for different ranges of the in­
dependent variable, X, impairs the interpretation of the parameters 
in terms of theoretical or physically interpretable quantities. It 
would be more convenient, and illuminating, to express the scaled 
symmetry relationship in terms of a single function spanning the 
domain of 0 < X < 1. 

From eq 2, let use consider two spline functions, ^1 and g2, which 
are each composed of two parts: 

g\V<) = * i . (* )* . i + *ib(*)*bi ( io ) 

gi(X) = gxSX)K2 + glb(X)bb2 (H) 

where bsi, bbi are appropriate constants and gXi(X) and gxb(X) are 
any linearly independent functions which span the space of g\(X) 
and g2(X). Miller has used separate splines to represent the left 
and right halves of the barrier function, E(X), and in Appendix 
II*, it is shown that necessary conditions for E(X) to match g\(X) 
over 0 < X < X* and to match g2(X) over X* < X < 1 (where 
the constraint gx(X) = g2(X) is imposed)15 are as follows: 

fibW = L?,aW]2 (12) 

fi.(**) = [1 + (1 - A£/A£*) , / 2r' (13) 

From the results in Appendix II*, the energy along the reaction 
coordinate at position, X, is given by 

I^-AJ — - —1 <"> 
[gH(X>) £>a(*')2J 

and from Appendix II*, 

* i . ( * * ) + ft.(l-**) = 1 (15) 

which is equivalent to conservation of the transformed reaction 
coordinate at the stationary point, X*. Equations 12 and 13 follow 
by imposing the constraint that the two spline functions, gt(X) 

(12) The inverted parabola model requires that a parabola meet the con­
straints: [(1) £(0) = 0; (2) E(X) = AE*; (i) dE(X)/dX = 0 at X = X; 
(4) £(1) = AE]. A parabola satisfying the first three conditions is given by 

•"-"•[F-U)'] 
and another parabola satisfying the second three conditions is given by 

Both parabolas satisfy the scaled symmetry relationship for all values of X. 
When X* = 0.5 + A£/8A£0 ', both parabolas meet all four constraints and 
are equivalent to the inverted parabola leading to the Marcus equation. 
Consequently, the inverted parabola leading to the Marcus equation also 
satisfies the scaled symmetry relationship. 

(13) E. R. Thorton, J. Am. Chem. Soc, 89, 2915 (1967). 
(14) J. L. Kurz, Chem. Phys. Lett., 57, 243 (1978). 
(15) The function g2(X) is the spline covering the domain X < X < 1. 

Since we require g2(X) = g\(X), g2(X) can be expanded in terms of g]t(X) 
and g,h(X). 
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and g2(X), are the same function, so that either of them will 
describe the entire reaction coordinate (0 < X < 1). A number 
of interesting consquences result: (1) The barrier position is a 
function of 1 - AE/AE* and depends only on the ratio AE/AE* 
(eq 13). (2) If the transformed coordinate, gl3(X*), is interpreted 
as bond order, then eq 15 is equivalent to bond-order conservation 
which has been assumed in the past for a number of highly 
successful empirical treatments of group transfer reactions.16 (3) 
The analogue of eq 14 for the reverse direction of the reaction 
is given by 

E(I-X) = 

* i . O - * * ) S L U -X*)1 
+ AE (16) 

By a comparison of eq 16 and 14, it can be seen that the scaled 
symmetry relationship holds not for the variables 1 - X and X, 
but for the transformed variables [i.e., g la(l - X) and g\JiX)] so 
that the analogies to eq 6 and 7 are as follows. If 

then 

*!.(!-**) *!.(**) 

E(I-X^)-AE E(X") 

AE* - AE AE* 
(18) 

V. Special Cases of the Scaled Symmetry Relationship 
A. Arc-Length Minimization. It is noteworthy that there is 

no function, spanning the domain 0 < X < 1, which can be 
constructed from two identical splines and which satisfies both 
the scaled symmetry relationship and the arc-length minimization 
criterion. This can be seen by noting from eq 1 and 14 that the 
arc-length minimization criterion requires that 

gli(X*) = [2 - AE/AE*Yl (19) 

which is in conflict with eq 13, except at AE = 0 and AE = AE*. 
Satisfaction of the arc-length minimization criterion requires two 
different spline functions. Since the double-knot spline repre­
sentation (using different splines) is always an approximation to 
any "true" barrier function, it appears that barrier functions in 
general do not have to exactly satisfy both the scaled symmetry 
relationship and the arc-length minimization criterion. However, 
as Miller's empirical relationships clearly demonstrate, real barrier 
functions come fairly close to meeting both constraints. It may 
be significant to note that while the two constraints cannot be 
precisely met for all values of X* (0 < X* < 1), arc-length 
minimization and the scaled symmetry relationship can be satisfied 
at the midpoint of this range (X* = ' /2, A£ = 0) and at the end 
points (X* = 1, AE = AE*; (1 - X*) = 1, AE = AER*). 

Since the scaled symmetry relationship implies a definite 
connection between the two halves of the reaction coordinate 
function, one might anticipate breakdowns for reactions where 
the forming bond is different from the beaking bond. An example 
might be the reaction F- -I- H2 —* F-H + H-, for which Bender 
and Schaefer have calculated the potential energy surface.17 In 
order to see how well the corresponding reaction coordinate follows 
the scaled symmetry relationship, we fit a polynomial, satisfying 
Miller's boundary conditions, to half of the reaction coordinate 
(X1 < X < 1). The scaled symmetry relationship was used to 
generate the other half (0 < X < X*), and the results are shown 
in Figure 1. 

B. Scaled Symmetry Relationship and the Marcus Equation. 
The scaled symmetry relationship leads to eq 14 which gives the 
energy along the reaction coordinate as a quadratic expression 

(16) E.g., ref 3. Pauling's definition of bond order (ref 11) is given by n 
= e(ro-')/°", where n is bond order, r0 is the equilibrium bond distance, and 
r is the distance between two nuclear centers. Pauling's definition represents 
one specific transformation of coordinates based on Cartesian distances (i.e., 
bond lengths). 

(17) C. F. Bender, S. V. O'Neil, P. K. Pearson, H. F. Schaefer, III, Science 
(Washington, D.C.) 176, 1412 (1972). 

Figure 1. Scaled symmetry relationship for F- + H2 -» F-H + -H. The 
potential surface for this reaction (ref 17) has been transformed from 
Cartesian coordinates to bond-order coordinates (ref 25) and scaled 
according to eq 6. The curve on the right half of the figure has been 
fitted to the transformed potential surface calculated by Bender and 
Shaefer (ref 17) and gives a reasonably good description of the left half 
of the surface. The scatter on the left side is largely due to the fact that 
AE* = 1.66 kcal, and consequently the left-side deviations are only 
0.1-0.3 kcal which is close to the degree of optimization achieved by 
Bender and Schaefer. For comparison, AE* - AE = 36.1 kcal. The 
scaled symmetry relationship is illustrated for the case where gt (X) and 
gi(X), eq 2, are double-knot spline functions. Miller's relationship is 
satisfied quite well: predicted 1 -X* (eq 1) = 0.956 (X* = 0.044); 1 -
X* (Bender and Schaefer, ref 17 and 25) = 0.941 (X* = 0.083). Since 
g\(X) and g2(X) are nonquadratic, Marcus' equation (eq 23) shows sig­
nificant deviations for the the barrier position: predicted 1 - X* = 0.77 
(X* = 0.23). Note that E(X1) = Ex = AE1. 

in the arbitrary function glti(X). Another quadratic expression 
in glt(X) is given by 

E(X) = gu(X)AE + gu(X)[l - gla(X)]4AE0* (20) 

where AE0* equals E(X0*) at the stationary point (X0*) for the 
special case of AE = 0. Equation 20 can be rearranged to 

E(X) = gu(X)[AAEj + AE] - 4AiS 0 W*) 2 (21) 

Equating coefficients of the quadratic term in glt{X) in eq 14 and 
21, we have 

A£* = gXl(tf)HAEj (22) 

Equating coefficients of the linear term in g\J(X) in eq 14 and 
21, we have 

Su(A*) = >/2 + A£/8A£0* (23) 

Equations 22 and 23 show that the scaled symmetry relationship 
can be expressed in the equivalent form of eq 21. The barrier 
height (A£*) given by eq 21 can be obtained by substituting g^X) 
= gia^Y1) and using eq 23: 

A£J = A£0* + Y2AE + 
AE2 

\6AEJ 
(24) 

which is the Marcus equation818 and is the same expression ob­
tained by direct differentiation of eq 21. The result is a significant 
one19 and demonstrates that Marcus' equation follows from a 
condition (i.e., a barrier function satisfying the scaled symmetry 
relationship) which is much more general than often believed (e.g., 
as a consequence of intersecting parabolas or adding a linear 
perturbation to a parabola, etc.). 

From eq 20, it can be seen that the Marcus relationship depends 
not on the specific choice of gi^X), but on the relationship (see 
eq 20) between the function modifying AE (i.e., g^(X)) and the 
function modifying AE0* (i.e., 4gw(X)[\ - gH(X)]). We can 
obtain a clearer view of this relationship by examining a reaction 
coordinate function of the form:20 

E(X) = Y2AE[I + A1(A)] + AJV[I - h2(X)] (25) 

(18) Note that the barrier position relationship, eq 23, applies to the 
transformed variable ^u(A1), not to X*. However, the barrier height rela­
tionship is independent of the choice of function for gla (eq 20 and 24). 

(19) Kurz (ref 14) has also shown that eq 21 leads to the Marcus equation. 
The fact that eq 21 follows from the scaled symmetry relationship is a new 
result. 

file:///6AEJ
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where H1(X) and H2(X) are linearly independent functions. By 
comparison of eq 20 and 25, it can be seen that21 

H1(X) = 2gu(X) - 1 (26) 

H1(X) = 1 - 4*,.(A)[1 - gu(X)} = H1(X)2 (27) 

Consequently, the Marcus equation will hold whenever h2(X) is 
the square of Hx(X),2 which in turn will hold for any function 
satisfying the transformed scaled symmetry relationship (i.e., eq 
17 and 18). 

The scaled symmetry relationship has a simple physical origin 
which can be best illustrated by example. If one considers a 
two-term Fourier expansion of a reaction coordinate,23 

£(0) = 0.5U1(I - cos 4>) + 0.5U2(I - cos 20) (28) 

it can be shown, after making the substitutions (^1 = AE; v2 = 
A£0

}; cos 20 = 2 cos2 0 - 1), that ZJ1 = -cos 0 and H2 = cos2 0. 
Since H2 = h2, eq 28 conforms to the scaled symmetry relationship 
and follows the Marcus equation exactly as V1 and v2 are varied. 
Equation 28 has been commonly applied to 2-fold rotational barrier 
problems,23 but with a suitable definition of 0, it could be employed 
as an approximate expression for any reaction coordinate with 
a single stationary point between reactants and products. 

Another function which leads to a low-order expansion of a 
reaction coordinate is bond order («), where 

n = e-o(r-ro) (29) 

a is a constant, r is the bond distance between two fragments 
(A-B), and r0 is the equilibrium distance. Morse24 used this 
relation in order to transform a vibrational well, which is an-
harmonic when expressed in Cartesian coordinates, to one which 
is quadratic when expressed in bond order. The Morse equation, 
in terms of bond order, is given by 

E(n) = DAB[n2 - 2B] (30) 

where DAB is the A-B bond dissociation energy. If this idea is 
applied to an A-B-C potential surface where the energy of A-B-C 
is empirically broken down into pairwise, Morse-like interactions 
between A-B, B-C, and A-C, it can be shown25 that the A-B 
and B-C interactions will contribute terms in n as high as second 
order and that the A-C interaction will contribute terms up to 
fourth order. For reactions whose stationary points occur near 
"BC ~ 0' "BC ~ xIi o r "BC ~ 1 ("BC is B-C bond order), the 
quartic terms are relatively unimportant, and application25 of eq 
25 to the potential surface shows that h2 =* Zi1

2 and that the 
Marcus equation gives a close description of AE*. 

The relationship between Zi1 and Zi2 has recently been examined 
for minimum energy pathways of several ab initio potential energy 

(20) Consider AE ^ 0 and arbitrary barrier function, E(X) = F(X) = FU) 
= F(0.5) + F1CZ1)U - 'Zi) + '/2F2CZi)U - 1Ii)1 + - • E(X) can be divided 
into an even function in (1 ~ 'Zi) and an odd function in (1 ~ 'Zi) where R2U) 
and RiU) are the even and odd functions, respectively: 

R1U) = F1CA)U - Vi) + JiFW2)U - 1Z2)
3 + ... 

RiU) = F(Y2) + ViF2CZi)U - Vi)2 + -. 

E(X) can be expressed as 

E(X) = 'Z2IiE(S1) + V2AE + AE^S2 

where S1 = 2R1ZAE and S2 = (R2 -
 1Z2AE)/AE0K Setting A1 = S1 and h2 

= 1 -S2, we obtain eq 25 which is a general expression for any barrier function 
where AE ^ 0. 

(21) Equations 26 and 27 are obtained by equating corresponding coef­
ficients of AE and A£0* in eq 20 and 25. 

(22) (a) Jane Donnella, Thesis, University of California at Los Angeles 
(1982); (b) J. R. Murdoch, D. E. Magnoli, and J. Donnella, paper presented 
at James Flack Norris Symposium, Meeting of The American Chemical 
Society, March, 1982, Las Vegas, NV; (c) J. R. Murdoch and M. S. Berry, 
unpublished; (d) J. R. Murdoch and M. Chen, J. Am. Chem. Soc, in press. 

(23) L. Random, W. J. Hehre, and J. A. Pople, / . Am. Chem. Soc, 94, 
2371 (1972). 

(24) P. M. Morse, Phys. Rev., 34, 57 (1929). 
(25) J. R. Murdoch and J. Donnella, / . Am. Chem. Soc, in press. 

surfaces involving proton, atom, and methyl transfers,25 pericyclic 
reactions,22b,c additions/fragmentations,22b,c and conformational 
equilibria.22d In all cases, the function Zi1 is nearly linear in bond 
order, and the square relationship (h2 = Zi1

2) leading to the Marcus 
equation holds to a high degree in the vicinity of the stationary 
point for many of the reactions, but in some of the group transfer 
reactions, substantial deviations from the square relationship (and 
Marcus' equation) are observed. The deviations are well described 
in terms of Zi2 = C2Zi1

2 + C4H1*, and preliminary results22' indicate 
that the origin of the Zi1

4 terms derives, at least in part, from the 
A-C interactions (as described by a pairwise Morse interaction 
model) in the structure [A-B-C] at the stationary point. These 
results, which will be reported elsewhere, illustrate that many 
potential surfaces can be represented as low-order expansions in 
terms of suitable functions and that, for some reactions, even the 
quadratic bond-order expansion is not bad.22a,b In such cases, the 
scaled symmetry relationship and the resulting square relationship 
(H2 = Zi1

2) will be good approximations, and the Marcus equation 
will give a good account of the barrier height. 

C. Scaled Symmetry Relationship and the Barrier Position. The 
Marcus equation can be used to obtain barrier heights without 
explicitly knowing Zi1, Zi2, or g^(X). When the square relationship 
is applicable, g^X?) is given by eq 23, but unless the function 
gla is known, X cannot be obtained. Fortunately, it appears that 
for many reactions gH is close to linear22"'*3'25 in bond order so that 
gu(Xi) can be approximated as the barrier position when the 
reaction coordinate is expressed as a fractional displacement in 
terms of bond order. This approach is equivalent to rewriting eq 
23 as 

*!.(**) = Vi + 
AE 

8A£n* 
^X (31) 

and the rhs has been used by Marcus to obtain the barrier pos­
ition.815 

As a first approximation for a nonlinear relationship between 
gia(X) and X (bond order), we could consider a symmetrical 
sigmoid function (0 < X < 1) with a single inflection point at X 

A"'/2 
= 7 

S i . W = 
X/2 + (\ -X)1I2 (32) 

For X = X, eq 32 can be substituted into eq 13, gu(X) can be 
eliminated, and an expression for X can be obtained which is 
identical with the Miller equation (eq 1). Consequently, if 

Zi , = 
Xf2-(I-X)1'2 

X'2 + (1 -X)1'2 

Hi = H1 

(33) 

(34) 

then eq 25 gives a barrier height which follows the Marcus 
equation and a barrier position which follows the Miller equa­
tion.26 It is interesting to note that several examples of ab initio 
reaction coordinates (single stationary points) have recently been 
found where AEX is well approximated by the Marcus equation, 
and X is well approximated by the Miller equation.22a-25 

We could also consider a nonlinear function of the form 

f i . W = 
XP 

X> + (1 -X)P 

which on substitution into eq 13 gives 

1 
X* = 

1 + 0-s) 
l /2p 

(35) 

(36) 

(26) This result illustrates that the arc-length minimization criterion is not 
a necessary condition for obtaining eq 1. Sufficient conditions leading to eq 
1 are the scaled symmetry relationship (and associated restrictions leading to 
eq 14) and the specific nonlinear relationship between h^X) and A1 given by 
eq 33. 
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Note that for p = ' / 2 w e get t n e Miller relationship for the barrier 
position, while p = 1 gets us the Marcus relationship for the barrier 
position (eq 31, rhs). It is interesting that two examples of 
double-minima reaction coordinates have been examined, and it 
appears that p > 1 gives a better account of the nonlinearity seen 
for gia(X) vs. X than p < l.22a'25 It is too early to tell whether 
specific values of p, or ranges of p, will correspond to the number 
of maxima and minima along the reaction coordinate, but it is 
clear that a single value of p will not be universal. Since values 
larger than one and less than one have been found, it would appear 
that the Marcus relationship for the barrier position (eq 31, rhs), 
corresponding to p = 1, may be a comfortable, although somewhat 
imprecise, compromise. 

VI. Conclusions 
Miller has previously developed a simple and remarkably 

successful relationship for predicting the barrier position in terms 
of AE* and AE, and it has been found that at least one new 
condition is necessary for obtaining Miller's equation. A sufficient 
condition has been identified and is termed a scaled symmetry 
relationship. The general class of barrier functions (nonspline) 
which exhibit the scaled symmetry relationship has been defined. 
AU of them lead to the Marcus relationship for the barrier height, 
and special cases lead to the Marcus or Miller relationships for 
the barrier position along the reaction coordinate. The scaled 
symmetry relationship follows from limiting the expansion of the 

How readily do the species X and Y participate in a nucleophilic 
displacement reaction such as eq 1 ? The concept of nucleo-

X - + CH3Y — Y" + CH3X (1) 

philicity in SN2 reactions of aliphatic systems has been a cor­
nerstone of organic chemistry ever since the early kinetic and 
stereochemical investigations of Ingold and co-workers.1 Some 
indication of this can be found in the considerable body of work 
devoted to the quantitative description of nucleophilicity. Results 
of this effort include linear free energy relationships such as the 
Swain-Scott23 and Edwards2b equations and the general treatment 
of Hudson.20 However, a completely satisfactory and unambiguous 
scheme for this quantification has yet to be presented, and the 
success and scope of the above treatments are limited. Part of 

(1) Ingold, C. K. "Structure and Mechanism in Organic Chemistry"; 
Cornell University Press: Ithaca, New York, 1969; p 422 ff. 

(2) (a) Swain, C. G.; Scott, C. C. /. Am. Chem. Soc. 1953, 75, 141. (b) 
Edwards, J. D. Ibid. 1956, 78, 1819. (c) Hudson, R. F. Chimia 1962,16, 173. 

reaction coordinate to second-order terms in suitable functions 
and forms a general basis for extending Marcus-like equations 
to all one-step reactions, including electron, proton, and group 
transfers, pericyclic processes, additions, fragmentations, chele-
tropic reactions, conformational equilibria, isomerizations, and 
so forth. The fundamental basis of the scaled symmetry rela­
tionship is undergoing examination.22'25,27 
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the difficulty arises from solvent effects, as even relative reactivities 
in SN2 reactions can be solvent dependent.3 This factor renders 
separation of intrinsic and solvent effects on the basis of solu­
tion-phase data difficult if not impossible. Also, nucleophilicity 
is inherently a kinetic property; according to such rate-equilibrium 
treatments as the Bell-Evans-Polanyi principle,4 reaction rates 
can be affected by thermodynamics. Thus, a complete description 
of nucleophilicity requires some means of compensating for any 
thermodynamic driving force. In general, this feature has not been 
included in past efforts.5 

(3) Parker, A. J. Chem. Rev. 1969, 69, 1. 
(4) (a) Bell, R. P. Proc. R. Soc. London, Ser. A 1936, A154, 414. (b) 

Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1938, 34, 11 and references 
cited therein. 

(5) However, a treatment of SN2 reactions in solution has appeared re­
cently (Albery, W. J.; Kreevoy, M. M. Adv. Phys. Org. Chem. 1978,16, 87) 
in which the kinetic-thermodynamic separation has been accomplished by 
using the Marcus equation, as we do here for the analogous gas-phase process. 
However, this work does not allow separation of solvent and intrinsic effects. 
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